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Abstract
On the Parisian commuting network, train drivers have to respect carefully theo-
retical arrival and departure times. Due to this rule, time is lost between the end
of the alighting and boarding and the door closure. Indeed, alighting and boarding
time is different per door and is the longest at the critical door. But even at critical
door, it is scarcely equal to dwell time. Thus, we propose a stochastic method to
model the alighting and boarding time based on door used periods called clusters
of passengers. We show that two behaviours of the alighting and boarding time
exist in function of the number of passengers at the door. We also conclude on the
time that could be save if the schedule were more adapted to passengers’ flow.
On line N of the Transilien network, 1min30 could be saved on a train run of 70
minutes. Finally, better spreading of passengers along the platform or specifying
exclusively boarding doors are levers to reduce the alighting and boarding time.
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1 Introduction
With spreading and denser cities, the transportation network is growing as well.
The transportation network is particularly impacted by the spreading of cities as
city spreading often goes with a specification of the different places inside the
urban area. Some business centers, malls or residential areas are created. Thus,
people are more and more transferring to go from home to work and from leisure
activities to home. Having efficient roads and public transport is a key element
not to have a congested city.

Even if both roads and public transport are part of the transportation network, cities
are more and more promoting public transports in the green transition context.
However, promoting public transport goes hand in hand with a good reputation
of performance and reliability of public transport. To evaluate their performance,
commuting trains, metro and buses need to identify some indicators and to get
some information about them. The indicators can be the number of delayed pas-
sengers, the number of cancelled trains, the evolution of the ridership...

In this master thesis, we will focus on commuting trains in the Paris area. Those
trains are operated in mixed traffic and constrained by a schedule, so all kind
of trains as fret trains, long-distance trains and commuting trains are using the
same infrastructure. In such an environment, a schedule combined with signalling
creates a secure and fluid train network. The schedule is the information shared
with passengers. So it has a key role in the reputation of the commuter trains. For
instance, delayed trains are defined from this schedule, as they are trains arriving
after their theoretical departure time.

However, schedule and signalling constraint commuting trains and their speed.
Indeed, it means that commuting trains cannot leave the station once passengers
have alighted or boarded. Therefore, the schedule simultaneously defines de-
layed trains and has a key role to reduce their number. Thus, the schedule needs
to be defined as close as possible to reality, taking into account the ridership and
its evolution in function of the hour and of the day. The schedule defines some
theoretical dwell times that the driver should respect.

1.1 Dwell time definition
To understand the dwell time process and how to improve it, let’s first define its
main components.

The dwell time is the time spent by the train at a station. It is noted DT and
computed, following equation 1.1, as the difference between the observed train
departure time (tdep) and the observed train arrival time (tarr).

DT = tdep − tarr (1.1)

The dwell time can be separated into four sequences, as shown in Figure 1.1 :
(1) a first technical time for door opening, (2) the alighting and boarding time, (3)
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some margins and (4) a last technical time for door closing. Door opening and
door closing depend on the rolling stock. In this analysis, door opening is fixed
at 1 second and door closing at 14 seconds. Those two times summing to 15
seconds constitute technical times, called TT .

Figure 1.1: Example of the different sequences of the dwell time for a 8 doors
carriage at one stop

The alighting and boarding time is hard to define and often depends on the avail-
able data. For instance, Harris [1], [2] studies alighting and boarding rate on data
collected by a gathering of 90 lines around the world. This data is manually col-
lected and therefore the alighting and boarding time is the time between the first
passengers to cross the door and the last one. In his thesis Daamen [3] dis-
tinguishes the main group of boarders and the late runners. Late runners are
opportunist passengers arriving on the platform when the train is already waiting.
Thus, Daamen considers that the alighting and boarding time does not take into
account late runners.

For this master thesis, a first and general definition can be drawn at the door level :
alighting and boarding time is the time spent between the first passenger crossing
door i during the stop (tifirst) and the last one (tilast). The alighting and boarding
time Y i at door i is computed following equation (1.2).

Y i = tilast − tifirst (1.2)

From the definition of alighting and boarding time, one can define the critical door.
The critical door is the door whose alighting and boarding time is the longest of
the train. Thus, the alighting and boarding time of the train is equal to the alighting
and boarding time at the critical door : Y ∗ = maxi Y i.

Finally, margins can refer to two different realities : the buffer time and the door
unused time. On the one hand, the buffer time is defined at the train level as the
time between the last boarding passenger and the door closing. The buffer time
will be called t∗m and computed following equation (1.3). On the other hand, the
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door unused time is defined at the door level as the time between the end of the
alighting and boarding time at the given door and the beginning of the buffer time.
The door unused time at door i will be called tim and computed following equation
(1.4).

t∗m = DT − TT − Y ∗ (1.3)

tim = DT − TT − Y i − t∗m (1.4)

Each of the components of the dwell time depends on the others. Thus, when
modelling the dwell time, the role of each component will be interesting to under-
stand.

1.2 Objective of the master thesis
Having a good picture of the time taken by passengers to alight and board, help
to adapt the service through for example the timetable, and thus to improve the
passengers’ perception. The understanding of the dwell time is closely linked
to the available data. The data set used in this master thesis gives the number
of passengers alighting or boarding the train for each seconds of the stop. It is
the first time that Transilien operator has such a precise data set. So, it creates
the opportunity to compute margins and give a precise time for the alighting and
boarding time. Then, this master thesis aims at answering the following questions:

How does a precise data set on the alighting and boarding of passengers during
the dwell time give insight on the structure of the dwell time and particularly on the
definition of the margins and their computations ? How can some behaviours of
passengers be understood through detailed data ? Which model can be chosen
to estimate the alighting and boarding time ? How can a model of the alighting
and boarding time help in the timetable building process ?

It is important to note that the focus here was mainly on modelling the alighting
and boarding time and on the knowledge it gives to Transilien in the timetable
building process.

We first proceed a literature review on the modelling of the dwell time and the pas-
sengers behaviour during it. Then, the context of the study is presented including
the Transilien network, the data set used and its preprocessing. From this data,
some statistics are given to better understand it before the presentation of the
method and models. The results are finally presented and discussed. Both the
method and results parts present first the estimation of the alighting and boarding
time before the margin study and adaptation of the timetable.

1.3 Bibliography review
The literature review tries to get an understanding of the modelling already done
globally. Thus, definition of the dwell time and separation with the alighting and
boarding time are investigated. Different modelling approaches are identified as
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well as variables selected into the models. Furthermore, factors influencing pas-
sengers’ speed during their alighting or boarding often conclude observations and
modelling.

1.3.1 Dwell time and alighting and boarding time definition
First of all, the dwell time is categorised and split in several ways. Those cate-
gorisation often depends on the available data. So it leads to different definitions
of the alighting and boarding time.

In their article from 1992, Lin & Wilson [4] distinguished different types of dwell
times based on the public transport kind. Buses dwell times that are dense, fre-
quent and led by the alighting and boarding time. So margins are not defined
for headways based service. On the other hand, commuter train dwell times are
much less frequent, on much longer trains and led by scheduled timetable. Mar-
gins appear in schedule based service.

Focusing specifically on trains networks and working on data close to the ones
studied in this thesis, Cornet [5] introduced the concept of minimum dwell time.
This minimum dwell time is the time needed for a given number of passengers to
alight and board and for the train to manage the technical times at a given station.
This minimum dwell time becomes a lower bound for the scheduled dwell time.

Buchmüller [6] is on of the authors trying to separate the boarding and alighting
time from the dwell time and to give a representation of it. In Buchmüller’s arti-
cle, the network under study is similar to the Transilien network: constrained by a
schedule and operated in mixed traffic. Mixed traffic networks are networks where
long-distance trains, suburban trains, regional trains and freight trains all share
the same infrastructure. Finally, the Swiss network studied by Buchmüller was
equipped by 30% with automatic passenger counting system. Automatic passen-
gers counting system collect really precise data but need heavy computationally
storage. All those characteristics make this article very close to Transilien con-
text. Buchmüller broke down the dwell time into subsets, tried to define each part
and gave some statistics on each of them. However, he considered only delayed
trains, so margins are not defined as part of the dwell time and he did not describe
any model or prediction.

Finally, in 2001, Wiggenraad [7] is the first author to define some ”clusters of pas-
sengers” on Dutch railway stations. He assumes that a passenger is part of a
cluster if the time interval between his predecessor and himself is less than 3 sec-
onds. He identified thanks to those clusters some passengers’ behaviour during
the alighting and boarding time. However, choosing 3 seconds between passen-
gers of the same cluster is not justified and we will define a new threshold later
on.

Therefore, several notions have been defined by the different researchers to better
capture the dwell time and its complexity. The issue for the researchers have thus
been to grasp a reality if the alighting and boarding time.
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1.3.2 Alighting and boarding time modelling
A lot of models have already been set up to estimate the dwell time and the be-
haviour of passengers when boarding and alighting the train.

Regressions In 1992, Lin & Wilson [4] tried some linear and non-linear regres-
sion models whose variables were the number of boarding, the number of alight-
ing and the load of the train. Those simple models are evaluated and compared
through t-statistics. They do not care about multicollinearity between passengers’
variables.

It is to avoid the multicollinearity that Cornet [5] introduces a new variable p de-
pending on the station. One value of p at one station leads to a value of boarding
passengers, a value of alighting passengers and a train load when leaving the
station. In his three articles, Harris [8], [9], [1] uses the data from more than 90
operators around the world to understand the alighting and boarding time. CoMet
and Nova metro benchmarking groups gather more than 90 lines around the world
and are managed by the Railway Technology Strategy Centre at Imperial College
London. Using this huge panel of public transport, a unified method of collecting
data have been set up. Each operator part of these groups should send two ob-
servers in the stations to collect times and number of passengers at the critical
door. Thus, characteristics of the rolling stock and of the layout of the platform are
part of the set of variables used by Harris. He was able to give a precise regres-
sion of the alighting and boarding rates. His models are based on delayed trains
and his research on the Weston formula. Weston formula is written by Weston in
1970 and is the first formula about dwell time in any scientific paper.

Finally, the normality have been questionned by Li in 2014 [10]. Li used track data
registering the train arrival and departure on the Dutch network. So to approximate
alighting and boarding time, his studies are using delayed trains. Li concluded that
alighting and boarding time follows a log-normal distribution.

Queuesmodel Palmqvist [11] in a literature reviewmade in 2021 report analysis
on formation of lanes and queues around the door and in the way between seats
in the train during the exchange time. In his thesis Daamen [3], tries to model
the passengers flows inside transport facilities. Therefore, a small part of the sim-
ulation is dedicated to the alighting and boarding processes. He first describes
how the dwell time can be split, then he assumes that alighting and boarding pro-
cesses happen as queuing systems. His simulation is limited since he assumes
that boarding passengers wait for alighting passengers to alight before beginning
to board. Secondly, he assumes that only one person can use the door at the
same time.

Other models In 2016, Li [12] tried to create a model avoiding counting data
and heavy computations. His goal was to estimate in real time the alighting and
boarding time using characteristics of the day and dwell times at previous stations
or on previous trains. Although this model is trained on the Dutch network, it
should be appropriate for all transport facilities around the world. As he does not
consider passengers behaviour, substitute variables are chosen such that they

Dwell time in public transport: a statistical model based on big data 5



are available in real-time. Ten parametric models and a non-parametric model
using the k-NN method are tested.

Zhang [13] creates in 2008 a cellular automatamodel to simulate the behavior of
alighting and boarding passengers in Beijing metro stations. He defined rules to
moves to the next cells, to manage conflicts, and he introduces some desire and
energy to move. This model translates in a really good way some characteristics
of the exchange of passengers during the alighting and boarding time. The main
drawback of this model is the assumption that passengers choose a door and
cannot modify their choice during the alighting and boarding time.

Finally, Su [14] creates in 2019 a simulation tool estimating the alighting, boarding
and settling time of passengers. Su creates a simulation based on agent-based
modelling to estimate the alighting and boarding time of passengers and evaluate
it on data from Santiago de Chile. They consider a set of actions and interactions
between the different passengers. However, in their simulation, it is assumed that
boarders wait for all alighters to get off the train. This assumption cannot be kept
when it comes to the Parisian network.

1.3.3 Factors speeding up or slowing down the speed of
passengers

Factors that influence dwell time are number of passengers, occupancy of the train
[15], spreading of passengers along the platform, driver behavior [10], presence
of cumbersome luggage [15], on the rolling stock feature such as the number and
width of doorways [1], and the station configuration such as the curvature, the
height, the step between the platform and the train [1].

Palmqvist [11] defines the “usable door width”, or the door width that is left when
waiting boarding passengers are narrowing the space available in front of the
door. Daamen [15] gave some figures for the alighting and boarding rates. He
particularly studied the impact of a gap between the train and the platform and the
presence of cumbersome luggage on those rates. The results from Su’s article
[14] show that an interior layout with theminimum number of seats leads to quicker
exchange time.

Li considers the driver behaviour into the computation of the alighting and board-
ing time and he interested himself in some correlations [10]. He looked at the
correlation between the hour of the day and the alighting and boarding time, the
one between the dwell time of the previous station or the delay at the previous
station and the alighting and boarding time at the current station.

Conclusion To conclude this literature review, dwell time and alighting and board-
ing time have not been often separated. The data collection does not ease the
differentiation between them as it is hard and heavy to get precise and abundant
data on the alighting and boarding of passengers. However, many models try to
understand and shorten the time spent by passengers to alight and board, con-
cluding on the main factors influencing the speed of passengers.

6 Dwell time in public transport: a statistical model based on big data



2 Network and data context
2.1 Network presentation
Transilien is the operator of the commuting network connecting the outer suburbs
to the center of Paris including eleven lines named with letters (C, D, E, H, J, K,
L, N, P, R, U). Different rolling stocks are running on the network, but in this study,
we are using only data coming from Regio2N trains. Regio2N trains are running
on lines N and R and are able to record detailed data. As line N transports more
passengers than line R, it was chosen to study alighting and boarding time on line
N and to validate the model on line R.

Figure 2.1: Schematic geographical situation of line N with studied stations and
terminus

Figure 2.1 presents a map of line N with its terminus and the stations analysed
here-below. Line N serves western suburbs leaving from Paris-Montparnasse
train station. One of its terminus is Dreux situated outside Ile-de-France adminis-
trative region, 80km far from Paris. In this reprt, the alighting and boarding time is
studied focusing on the Dreux branch since, in September and October, Regio2N
trains were running only on that branch.

Trains serving from and to Dreux stop at nine stations represented on Figure 2.1
with a frequency depending in the hour of the day. On Dreux branch, there are
three trains per hour between 6am and 8am towards Paris and two trains per
hour between 16pm and 21pm in the suburbs direction. During off peak hours,
only one train per hour is running in both directions. However, those trains are
added to the trains coming from the two other branches of the line. Thus, during
peak hours, one train stops every 4 minutes at Versailles-Chantiers station and
every 10 minutes at Plaisir-Grignon. So, the frequency is high on the main branch
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of the line. Therefore, line N is a busy line on the main branch but Dreux branch
is less busy. The main nodes are thus Versailles-Chantiers and Plaisir-Grignon
stations.

Coming to passenger numbers, at Versailles-Chantiers during peak hours, be-
tween 200 and 400 passengers alight or board. This number can go up to 700
passengers in really crowded days. As a comparison, during peak hours, between
100 and 300 passengers transfer at Plaisir Grignon, and between 25 and 125 at
Houdan.

2.2 Data collection
As it has been said previously, data come from a specific rolling stock. The trains
under study, called Regio2N, are used on lines N and R of the commuter train
network. These double-deck trains are composed of either one or two train sets
represented on Figure 2.2. Each train set is 110m long and has eight 1.6m-wide
doors. The seated capacity of a train set is of 576 passengers while total capacity
is of 1046 passengers. The seated capacity is the number of seats available in
the train while the total capacity includes both seated and stood capacity. Stood
capacity is considered to be 4 passengers per square meters. As one can see on
Figure 2.2, the layout of Regio2N trains alternate between door-specific cars and
double-deck cars with seats.

Figure 2.2: Layout of Regio2N trains

The trains are equipped with an automatic passenger counting (APC) system us-
ing infrared lights; captors are located above each doorway and are able to detect
separately alighting and boarding movements. The captors are reliable at a 95%
level. Captors are recording continuously both number of alighting and boarding
at each door. Thus, data contains measure points described by a time, a num-
ber of boarders and a number of alighters. The period of observation goes from
September to October 2021. Even if 2021 has been a year impacted by the coro-
navirus pandemic, the number of passengers was around 80% of the 2019 level
in September and October.

2.3 Preprocessing on the dataset
Data set gives us many information including the number of passengers alighting
or boarding and the time of the observation. However, this information has to be
transformed into alighting and boarding time. The way the alighting and boarding
time is computed changes its definition and its accuracy. So we propose here a
way to compute the alighting and boarding time and cleaning of the dataset. All
computations are done with the coding software R.

8 Dwell time in public transport: a statistical model based on big data



In the raw data set, the alighting and boarding of passengers are represented
as measure points in time as shown in Figure 2.3a. Measures made outside the
observed dwell time or when door are closed are considered as error from the
captor and are disregarded. Finally, stops whose dwell time was higher than 180
seconds were discarded as this delay might come from factors outside the scope
of this study.

(a) Raw data

(b) Clusters transformation

(c) Observed alighting and boarding times

Figure 2.3: Example of a stop at Versailles-Chantiers station, at 7:20am, in the di-
rection Suburbs-Paris. In b) clusters are computed. Then, alighting and boarding
time are deduced from the clusters in c)

Inspired by Wiggenraad [7], some clusters of passengers were defined. A cluster
of passenger is defined as a lane of passengers such that two passengers part
of this lane are separated by less than S seconds. Late runners are defined as
passengers who are not part of any of the clusters. The alighting and boarding at
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one specific door is composed of one or several clusters of passengers and late
runners.

Wiggenraad [7] set the parameter S to 3s but his choice is not justified. Thus, in
this study, different thresholds were tried and based on key indicators, 2 seconds
has been chosen as the most realistic threshold to describe a cluster. The criteria
used to make this decision are detailed in Table 2.1. A full Table of all considered
indicators is provided in Appendix A.

It was essential to keep the more data as possible without transform reality. Thus
S equal to 1s was discarded as it keeps too few data. Then the number of clusters
per door was analysed. Indeed, as more than 2 clusters at one stop at one door
is hardly observed.

Table 2.1: Key indicators computed on data from line N between September and
October 2021 to choose the definition of a cluster
Time between 2 passengers Number of Number of Percentage of doors with

of the same cluster (s) clusters different stops less than 2 clusters (%)
<1 8,347 1,640 98.4
<1.5 13,761 2,420 98.7
<2 14,674 2,532 99.2
<2.5 16,039 2,746 99.5
<3 17,084 2,832 99.5

With the introduction of clusters, the alighting and boarding time at the door level
is defined as the time spent between the beginning of the first cluster at this door
and the end of the last cluster. This definition does not consider late runners as
they are assumed to be opportunist passengers. The transformation of the data
is illustrated for one stop in Figures 2.3.

Using this method, the alighting and boarding time can be computed for each door
of each stop composing the data set. So during the computation of the clusters,
three data sets are created. The first one, called ”Clusters” contains each clusters
and its corresponding variables, the second contains all the stops where there
are too few people to create any cluster. The stops part of ”Nobody” data set
are considered to have an alighting and boarding time equal to 0s. The last one
contains stops considered as outliers. Indeed, the flow of passengers using a
given door was sometimes very high. The quantile 99% of this flow is chosen to
separate outliers. It corresponds to a flow of 3 pass/s. Thus, the last data set,
called ”Outliers”, contains all doors for which the flow of passengers was above 3
pass/s. This last dataset is kept to be estimated later on in the analysis.

The main data set containing the clusters and their variables is composed of 2,532
stops characterised by 13,253 doors and 14,674 clusters. Even if a train is com-
posed of either 8 or 16 doors, not all doors are part of the data set because some
of them are not open during the stop. The ”Clusters” set is then split into a training
set and a testing set with proportions 75% and 25%. This split is based on train
runs, so that full train runs are part of only one of the sets. This consideration is
useful when coming to the computations of the time savings in Section 4.3.2. The
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training set is used to, fit different models while the testing set enables to compute
goodness-of-fit metric to rank such models.

2.4 Variables
For each measure of the dataset, are known the train number k, the station s, the
date d, the theoretical arrival and departure times at the given stop, the observed
arrival and departure times at the given stop, and the direction. The direction can
be either Paris-Suburbs (PS) or Suburbs-Paris (SP). The direction is linked to the
platform p on which train stops.

Table 2.2 summarizes all variables that have been considered for the model.

Table 2.2: List of variables used into regressions
Variables Type Interval Unit Notation
Alighting and boarding time at door i Continuous [0, 165] Second Y i

k,s,d

Passengers-specific variables
Number of boardings at door i Continuous [0, 86] Passenger Bi

k,s,d

Number of alightings at door i Continuous [0, 136] Passenger Ai
k,s,d

Total number of passengers at door i Continuous [0, 145] Passenger N i
k,s,d

Occupancy of the train unit Continuous [0, 2058] Passenger Lk,s,d

Platform-specific variables
Platform width Categorical {1, 2, 3} Ws,p

Number of exits on the platform Discrete [1, 5] Exit Es,p

Gap between the train and the platform:
Vertical Continuous [0, 35] cm Hs,p

Horizontal Continuous [0, 26] cm Vs,p

The dependent variable is the alighting and boarding time designated as Y . The
models proposed below will try to approximate Y .

Passengers-specific variables, including the number of alighting and boarding
passengers (A, B and N ) and the occupancy of the train set (L), are integers, so
they are discrete variables. However, they can be considered as continuous vari-
ables as in Table 2.2. Additionally, one should underline thatN i

k,s,d = Bi
k,s,d+Ai

k,s,d.

The platform-specific variables include platform width. Platform width is a cat-
egorical variable taking values in {1,2,3}. 1 represents a narrow platform, 3 a
wide platform and 2 a medium-size platform. Number of exits on the platform is
a discrete variables. Versailles-Chantiers station has 5 exits on its platforms. All
other platform have either one or two exits. Finally the horizontal and vertical gaps
between the train and the platform are given in cm.

One should notice that, used data come from a unique kind of rolling stock. So,
contrary to studies like Harris ones [1], the model does not include any variable
describing the rolling stock.

In addition to variables presented in Table 2.2, transformations are applied to con-
tinuous variables. Square functions, logarithm function, root squared functions
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are added to the set of variables. Finally, the interaction between variables are
alsotaken into account.

To conclude, data from line N of the Transilien network is transformed into a ”Clus-
ters” data set to compute alighting and boarding time. This ”Clusters” data set is
split into a training set and a testing set. All data come from Regio2N trains, so
passengers-specific variables and platform-specific variables are selected for the
modelling of the alighting and boarding time. Some transformations and interac-
tions of these variables are also included in the following analysis.
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3 Statistical analysis
To begin with, some statistics are computed to give a global picture of the data
set. In this chapter, we will first focus on the alighting and boarding times statistics
and passengers statistics. Then, theoretical dwell times will be presented. Finally,
door unused time and buffer time are statistically analysed.

3.1 Descriptives statistics
The data set will now and until Section 4.3.2 refer to the ”Clusters” data set contain-
ing 2,532 stops. As said previously, it contains 13,253 doors and 14,674 clusters.

Distribution of alighting and boarding time The data set is split into a training
set and a testing set. The training set contains 9,484 doors while the testing set
contains 2,881 doors. Thus, 9,484 alighting and boarding times are used for the
modelling and the analysis and 2,881 times will enable to compute goodness-of-fit
metrics. Alighting and boarding time distribution is presented in Figure 3.1.

Figure 3.1: Distribution of the alighting and boarding time on the Cluster data set
containing data on line N from September to October 2021

This distribution presents onemain mode around 12s. However, close to 0 the dis-
tribution seems to increase as well. Figures 3.2 show two separated histograms
if the data set is split according to the number of passengers N at the door during
the given stop. These figures introduce the idea of two behaviours depending on
the number of passengers at the door. The first one looks more exponential, while
the second one presents one mode. The separation of those two behaviours will
be studied in Section 4.2.2.
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(a) Small N (b) High N

Figure 3.2: Separation of the two modes with a split of the data set according to
the number of passengers. Data from line N between September and October
2021

Statistics on the number of passengers Let’s give some statistics about the
number of passengers. Table 3.1 compares the global statistics to statistic on the
dataset reduced to doors with a small N and doors with a high N. In Section 5.1.3,
we will show that the data set should be split around N = 4, this split is used in
the following statistics. The doors used by less than 4 passengers represent 14%
of the ”Clusters” data set. So small transfers is a great part of the data set. It
is interesting to observe that the load of the train is in general lower for a small
number of passengers than for a high number of passengers. This means that
when there is at least one door used by a small number of passengers, the train
load is globally lower.

Table 3.1: Descriptive statistics of passengers variables at the door level of Clus-
ters data set

All observations Small N High N
Ai Bi L Ai Bi L Ai Bi L

Number of observations 12365 1690 10675
Mean 6.9 6.5 194 1.3 1.2 106 7.7 7.3 207
Median 3 3 146 1 1 71 5 5 163

Standard deviation (Std) 9.3 8.1 187 1.0 1.0 136 9.7 8.4 190

Table 3.2: Statistics of the passengers variables for two stations at the train level

(a) Versailles-Chantiers
449 stops

A B L Y
Mean 108 63 350 31.9
Median 80 46 286 29.5
Std 98 61 255 17.0

(b) Plaisir-Grignon
420 stops

A B L Y
Mean 46 66 273 22.6
Median 26 33 203 19.5
Std 54 87 222 14.3
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Table 3.2 focuses on two main stations of the line, namely Versailles-Chantiers
and Plaisir-Grignon stations. One third of the observations occur at Versailles-
Chantiers station (4045 doors) while one quarter occur at Plaisir-Grignon (3320
doors). Versailles-Chantiers station is a particularly dense station : the number
of passengers alighting or boarding at Versailles are nearly twice higher than at
Plaisir-Grignon station. Moreover, the load of the train is higher in Versailles than
in Plaisir-Grignon, meaning that some of the passengers only transfer between
Paris and Versailles.

Correlation matrix The correlation between all variables is computed to under-
stand colinearity between variables. The correlation matrix is shown in Figure
3.3.

Figure 3.3: Correlation matrix between variables of the ”Clusters” data set

As we can see on Figure 3.3, the alighting and boarding time is highly correlated
to the number of passengers and especially with the number of boarding passen-
gers. The total number of passengers is highly correlated with A and B as N is
the sum of A and B. To avoid multicollinearity, the model will include only N or
a combination of A and B. Indeed, number of alighting passengers and number
of boarding passengers are not correlated. Their correlation coefficient is −0.14.
This coefficient seems reasonable as this study takes place at a given door during
a given stop. So no effect of correlation between stops are studied.

All others correlation coefficients are less than 0.5 except for the correlation be-
tween the number of exits on the platform and the horizontal gap between the
train and the platform.

3.2 Theoretical dwell times
Theoretical dwell time definition The theoretical dwell time refers to the sched-
uled dwell time. As we have access to the scheduled arrival and departure time,
the theoretical dwell time can be computed. Also, the theoretical alighting and
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boarding time is the theoretical dwell time minus 15 seconds of technical time.
Thus, looking at the schedule gives an idea of the planned alighting and boarding
time.

The theoretical dwell times are set to fit the observed ones for nearly all stops.
However, between Montparnasse and Dreux, a lot of time is lost at the station
waiting for the theoretical departure time. One can wonder if theoretical dwell
times are not too long.

Some stations have different dwell time along the day. Figures 3.4a and 3.4b
shows the theoretical dwell times in function of the station and the train number.

(a) Even trains (direction Suburbs-Paris)

(b) Odd trains (direction Paris-Suburbs)

Figure 3.4: Theoretical dwell time in function of the station and the train number
for line N between September and October 2021

Delayed trains because of a too long alighting and boarding time at the train
level As we try to understand the alighting and boarding time, in this paragraph,
we check the occurrence of situations where the theoretical alighting and boarding
time is too short because of too many passengers. This study gives an overview
of stops for which the scheduled dwell time should be widen. From this study, five
main conclusions were drawn.

• Among 2532 stops, 189 stops have an observed alighting and boarding time
longer than the scheduled one. In average, the delay is around 12 seconds.

• Among those 189 stops, only a third (62 stops) implies delayed trains. A
delayed train is a train that arrives at the station after its theoretical departure
time.

16 Dwell time in public transport: a statistical model based on big data



• Among the 637 delayed trains from the initial 2448 ones, 62 have an alighting
and boarding time longer than the scheduled one. So 10% of delayed trains
will have to manage crowded platform.

• Among the 189 long alighting and boarding times, 83 occurred at ”Versailles-
Chantiers” station, so a half of them, and 52 at ”Houdan” station, so a third
of them.

• Among 995 trains ahead of the schedule, 78 are delayed because the ob-
served alighting and boarding time is higher than the theoretical one added
to the additional seconds from the advance. It represents 8% of them.

To conclude, 7.7% of all stops are delayed because of a too long alighting and
boarding time. Increasing the theoretical dwell time or adapting it in function of the
hour of the day can solve those trains delays because of the ridership. However,
other leverages exist to control the alighting and boarding time, including better
understanding of the spreading of passengers along the platform.

3.3 Factors influencing on door unused time
The door unused time is defined by equation (1.4) as the time lost at the door level
waiting for the passengers at the critical door to alight and board the train. This
precise data set allows to deeper analyse the impact of the uneven spreading of
passengers on the total alighting and boarding time. In this section, door unused
time is analysed in function of the number of passengers (N) and of the number
of exits on the platform (E). Also to keep only one measure per stop, the mean of
all door unused time is kept. Indeed, the trains can be composed of either one or
two train sets. So the mean is more robust than the sum of all door unused time.

3.3.1 Door unused time in function of N
One of the factors influencing the spreading of passengers on the platform is the
number of passengers. Intuitively, the more passengers are waiting on the plat-
form, the more spread they are. To understand the spreading of the passen-
gers, the door unused time is expressed, following equation (3.1), as a fraction
of the alighting and boarding time at the train level. This value will be called the
Spreading Indicator (SI). Thus if the spreading indicator represents 0% of the train
alighting and boarding time, it means that passengers are perfectly spread. On
the contrary, if the spreading indicator is equal to 100% of the train alighting and
boarding time, it means that passengers are all grouped at the critical door.

SI =

∑I
i=1 t

i
m

I × Y ∗ (3.1)

Figure 3.5 presents the door unused time in function of the number of passen-
gers. All passengers are considered including alighting and boarding passen-
gers all along the train. As expected, the percentage decrease when the number
of passengers increases, meaning that passengers spread more when they are
more. However, even for high number of passengers, the door unused time rep-
resents 60% of the alighting and boarding time at the critical door. Thus, it seems
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Figure 3.5: Spreading indicator in function of the total number of passengers
alighting or boarding at the station on the training set. The blue line is the trend
line and gray zone is the standard error of the trend line.

that even for a high number of passengers an uneven spreading still persists. To
check this uneven spreading, Figure 3.6 represents the percentage of passen-
gers at the critical door in function of the total number of passengers alighting and
boarding at the station. Below 50 passengers, between 25% and 75% of passen-
gers use the critical door. Moreover, 12% of passengers are using the critical door
for number of passengers above 100. A perfect spreading of passengers would
lead to a use of the critical door by 6% of the passengers. Therefore, even on a
crowded platform, uneven spreading persists.

Figure 3.6: Percentage of passengers at the critical door in function of the total
number of passengers alighting or boarding at the station on the training set. The
blue line is the trend line and gray zone is the standard error of the trend line.

So, crowds better spread along the platform than sparse passengers but their
spreading is not perfect. Thus, operators have tried to spread the exits along the

18 Dwell time in public transport: a statistical model based on big data



platform to encourage passengers to do so.

3.3.2 Door unused time in function of the layout
A second factor influencing the spreading of passengers on the platform is the
number of exits and their location. Indeed, daily passengers know the position of
the exit at their stop and might be located in the train in function of this. Therefore,
if several exits exist, passengers might divide themselves between each door of
the train. This is particularly important factor for crowded stations. Figure 3.7
shows the result of the door unused time in function of the layout. It shows that
the passengers are effectively more spread when more exits are on the platform.

Figure 3.7: Spreading indicator in function of the number of exits on the platform,
for stations of the training set

Figure 3.8: Door unused time in percentage of the alighting and boarding time at
the train level, in function of the number of passengers and exits on the platform

However, when both factors are combined, it appears that the number of passen-
gers has a greater effect than the number of exits. Figure 3.8 shows the door
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unused time in function of the number of passengers on the platform and a trend
line is drawn for each number of exits. The three lines have the same trend so
it is hard to conclude on the effect of the number of exits on the spreading of
passengers.

3.4 Buffer time and punctuality
The buffer time is defined by equation (1.3) as the time lost by the train at the
station waiting for the signalling or its theoretical departure time. As buffer time
has been rarely analysed in the Parisian network, an analysis of its characteristics
was necessary. Firstly, statistical results will be given, then the method based on
delayed trains will be compared to the one based on clusters.

3.4.1 Buffer time in function of punctuality
The buffer time is analysed in function of the punctuality of the train. A train is
considered ahead of its schedule if it arrives at the station before its theoretical
arrival time. A train is delayed if it arrives at the station after its theoretical depar-
ture time. Finally, a train is on time if it arrives at the station between its theoretical
arrival and departure times.

Table 3.3 presents the mean and the median of the buffer time in function of the
punctuality of the train.

Table 3.3: Buffer time in function of the punctuality of the train
Ahead of schedule On time Delayed

Mean (s) 39.7 16 10.7
Median (s) 36.5 13.5 8.5

As expected, the later is the train, the shorter is the buffer time. More interest-
ingly, for trains ahead of the schedule, the buffer time is really close to 40s, and
according to Figures 3.4, 40s is also the theoretical dwell time for many of the
stops. Another point of interest is that the buffer time for delayed trains is not so
close to 0. So let’s to evaluate the method based on delayed trains.

3.4.2 Evaluation of the method based on delayed trains
To compute alighting and boarding time, many articles [10] assume that delayed
trains are leaving once all passengers have alighted or boarded. Indeed this
method is used when detailed data is not available. Thus, it is assumed that there
is no buffer time for delayed trains and therefore that the dwell time is only com-
posed of the alighting and boarding time and the technical times. So, the method
of delayed trains approximates the alighting and boarding time as the dwell time
minus the technical time.

To evaluate this approximation, it was compared to two other methods. So we
end up with three definitions of the alighting and boarding time:

• computation based only on delayed trains: Ydelay = DTdelay − TT ;

• a method using all stops of all trains: Yall = DT − TT ;

20 Dwell time in public transport: a statistical model based on big data



• the method using clusters as presented in this report: Y = maxi Y i.

For all three definitions, only the alighting and boarding time at the critical door is
computed. Additionally, all models include the same set of variables, namely A,
B and the interaction between them (A × B). Finally, the testing set is reduced
to only delayed trains, so that the goodness of fit indicators are computed on the
same number of data.

Then for each definition of the alighting and boarding time, the regression is trained
on the training set and then tested on the testing set. The estimated alighting
and boarding time, called ŷ, are compared to cluster definition y and some in-
dicators of the goodness of fit are computed. The chosen indicators are the root
mean squared error (RMSE) defined by equation 3.2, and the mean absolute error
(MAE) defined by equation 3.3.

RMSE =

√√√√ 1

n

n∑
i=1

(ŷ − y)2 (3.2)

MAE =
1

n

n∑
i=1

|ŷ − y| (3.3)

MAPE =
1

n

n∑
i=1

|ŷ − y|
y

(3.4)

Table 3.4: Evaluation of the definition of the alighting and boarding time based on
delayed trains

Method R² RMSE MAE
Yall 0.03 30 30
Ydelay 0.28 16 15
Ycluster 0.40 8 7

The results are given in Table 3.4. One can observe that the values of the indica-
tors are divided by two between each definition. Therefore selecting only delayed
trains is far better than using all the trains but it is still an approximation. The clus-
ters method is the most precise. Thus, when detailed data is available, it should
be used.
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4 Method
In this chapter, we focus on the stochastic model. As both buffer time and door
unused time depend on the alighting and boarding time, it becomes necessary to
characterize, model and estimate it.

Firstly, three different models will be compared and one of them will be selected.
Then, the selected model is slightly modified to keep only influencing variables,
and a split of the data set is proposed to better fit observations. Finally, margins
are discussed and used to check the robustness of the timetable.

4.1 Alighting and Boarding time modelling
Regression is a simple way to describe the influence of some parameters on a
phenomenon. Indeed, regression explains a dependent variable Y in function of
some explanatory variables. To each variable v is associated a coefficient βv, giv-
ing the variation observed in Y if variable v increases by 1 while all other variables
are unchanged. Using regression allows then to interpret easily the effect of each
variable on the variable of interest Y . In mathematical writing, with V the number
of variables, β of length V , Y of length the number of observations n and X of
dimensions (n,V ), linear regression can be written following equation (4.1).

Ŷ = Xβ̂ + ε (4.1)

4.1.1 Proposition of three different models
The most simple model is the Gaussian linear regression. Gaussian linear regres-
sions can be interpreted easily through their coefficients. However they assumed
a normally distributed error term. According to Figure 3.1, the distribution of alight-
ing and boarding time is positive, continuous and right-skewed. So, a log-normal
or gamma distribution would maybe better fit the observations.

At the end, three different models are tested and compared:

1. a linear Gaussian regression : Y i = βX i + ϵ;

2. a linear log-normal regression : log(Y i) = βX i + ϵ;

3. a generalized linear model with the gamma distribution.

The two first models are Gaussian linear models. So they can be written E(Y ) =
βX. However, the log-normal distribution implies a transformation of the data.
The estimation returned by the regression is E(Y ) but an error term exists and is
normally distributed. The third model is a generalized linear model so it allow the
error not to be Gaussian, it will be further explained in the next paragraph.
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4.1.2 Insights on Generalized Linear Models (GLM)
The last proposed model is a generalised linear model used with the gamma dis-
tribution.

More generally, GLMs are composed of three parts [16] :

1. a random component: E(Y ) = µ

2. a systematic component: η = βX

3. and a link function: η = g(µ)

Generalized linear models (GLMs) are more flexible than Gaussian linear models
for two reasons. First, the distribution of the random component is not necessar-
ily Gaussian. Secondly, the link function can be any differentiable function while
in Gaussian linear models, the identity function is used. Thus, as the systematic
component of GLMs is a regression, they keep high interpretability, and at the
same time the random component and the link function ensure flexibility into the
model. In the alighting and boarding time case, the distribution is continuous, pos-
itive and right-skewed. As those characteristics are also describing the gamma
distribution, the gamma distribution is chosen for the random component. Gamma
distribution can be written in function of a canonical parameter θ and a dispersion
parameter ϕ following equation (4.2).

f(y, θ, ϕ) =
1

Γ( 1
ϕ
)

1

y

(
−θy

ϕ

) 1
ϕ

exp θy

ϕ
, ∀y > 0 (4.2)

The Gamma function Γ is the function such that : ∀x > 0, Γ(x+ 1) = xΓ(x).

The canonical parameter is linked to the mean of the distribution though a function
γ′ such that µ = γ′(θ) = −1

θ
. The dispersion parameter is linked to the variance

of the distribution, such that V ar = ϕµ2 The principle of GLM can be summarized
by the diagram represented on Figure 4.1 in the case of gamma distribution.

Figure 4.1: Pattern of the interaction into GLMs

GLM are predicting µ using X, so the best β needs to be estimated. However,
the maximum likelihood distribution is going through θ. Using the link function
such that η = θ makes computations much easier. This particular link function is
called the canonical link. To each distribution that might be chosen for the random
component corresponds a canonical link.

The canonical link leads to a simplified derivation of the maximum likelihood esti-
mator. Additionally, using the canonical link ensures that the sum of residual is 0.
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The canonical link attributed to the gamma distribution is the reciprocal link, i.e.
the function defined by : ∀x > 0, g(x) = 1/x.

E[Y ] =
1

βX
(4.3)

So finally, for the estimation of the alighting boarding time, the Gamma distribution
is chosen and equation 4.3 stands.

4.1.3 Criteria to choose among models
The best estimation of the alighting and boarding time is sought. All proposed
models will then be trained on the training set and ranked on the testing set. So,
some metric are selected to choose the best model among all. Four indicators
have been selected.

• Root mean squared error (RMSE)

• Mean absolute error (MAE)

• Mean absolute percentage error (MAPE)

• Kullback-Leibler divergence (KL-distance)

The three first indicators are usual indicators for goodness of fit of linear regres-
sions. However, they assume that the error of the distribution is Gaussian and
that the estimation of interest is the mean of the distribution.

In the alighting and boarding time case, the distribution of the error might not be
Gaussian. Secondly, as the study is turned around margins, the quantiles are
the object of interest. Therefore, another goodness of fit metric is needed. The
Kullback-Leibler divergence is chosen. Indeed, this measure was introduced in
the probability theory context. It measures the information lost when a distribu-
tion Y is approximated by a distribution Ŷ . The general formula to compute this
distance is the following:

DKL(Y ||Ŷ ) =
∑
i

Y i log
(
Y i

Ŷ i

)
(4.4)

Such a criteria compares the distributions between them. We will be able to com-
pare the distributions on the part that interest us the most, i.e. between their
quantiles 0.9 and 1.

4.2 Improvements of the model
After having selected the best model, some refinements can be applied to make
simpler and closer to the observations.

4.2.1 Variables selection
First of all, a selection of variables would keep only influencing variables. The
model includes 6 continuous variables and their 3 transformations (log, square,
squared root), so 18 different possibles variables, one categorical variable and
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one discrete variables. Secondly, all interactions 2 by 2 are considered. At the
end, all variables, their transformations and their interaction are at first included
into the first model, so around 35 terms. Thus, hundreds of models can be drawn
from all possible combinations of these terms. To select the best model among
those, an algorithm of automatic selection is used. Such an algorithm considers all
variables and return the best sub-set of variables for one Gaussian linear model.

Among algorithms of automatic selection, some begin from the null regression, in
other words a regression containing only a constant, and then add only variables
improving the model according to a chosen criterion. Those algorithms are said
to run forward. Other algorithms begin from the full regression, i.e. the regression
containing all variables, then remove variables to improve the model according to
a chosen criterion. Those algorithms run backward. Finally, stepwise algorithms
run both backward and forward.

In this report, we choose a stepwise algorithm to select the best combination of
variables based on the Bayesian information criterion (BIC). The BIC definition is
given in equation 4.5 (with V the number of β parameters into the regression, n
the number of observations, and L(β|Y ) the likelihood). It has been chosen as it is
more influenced by the number of parameters than the Aikake criterion. Moreover,
the R² increases when adding variables, so it becomes better with the complexity
of the model and favours more complex models. On the contrary, the BIC criterion
takes into account the number of parameters, so favour simple models.

BIC = V log(n)− 2 log(L(β|Y )) (4.5)

The stepwise algorithm is a systematic search algorithm running in both directions,
forward and backward. A pseudo-code written in Algorithm 1 explains the different
steps of the selection. Starting from a first full regression including all variables,
any variable that does not provide an improvement in the model fit is removed.
So we obtain a set of variables. Then, at each step, all variables are considered.
If a variable is already selected, the algorithm computes the BIC of the regression
without this variable. On the contrary, if a variable is not part of the regression,
the algorithm computes the BIC of the regression including this variable. Finally,
all BICs are compared and the minimum one is chosen. Thus at each step, one
variable among all is either added or removed from the selection.

As a result, this algorithm returns around ten variables that are the most contribut-
ing to the model.

4.2.2 Split of the dataset
The second improvement of the model concerns the number of modes. Indeed,
according to Figure 3.1, the distribution of the alighting and boarding time has two
different modes: one around 2 seconds and one around 12 seconds. So it seems
that two behaviours can be observed when it comes to alight or board a train. To
translate this particularity, mixed distribution can be used, training two different
models and adding them at the end.
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Data: Training set
Initialization: Full regression composed of all variables (set X0);
Delete variables that don’t change the BIC of the regression;
X = set of variables included in the regression;
X̃ = set of variables not included in R;
Xselected = an empty set representing the null regression;
while X != Xselected do

X = Xselected #except during the first iteration;
Update X̃;
B = {BIC of the regression including the variables in X} #set of all BIC;
A = {X} #set of combinations of variables;
forall variables v in X do

X ′ = X \ v;
Append (BIC of regression including variables of the set X ′) in B;
Append (X ′) in A;

end
forall variables ṽ in X̃ do

X ′ = X ∪ {ṽ};
Append (BIC of regression including variables of the set X ′) in B;
Append (X ′) in A;

end
Xselected = A[argmin(B)] #selection of the sub-set corresponding to the
minimum BIC;

end
Return X

Algorithm 1: Pseudo-code of the Stepwise algorithm

So the data set is split into two smaller sets according to the number of passen-
gers N. It appears that the distribution of the alighting and boarding time for small
number of passengers differs from the distribution of alighting and boarding time
for a higher number of passengers. This split is represented on Figures 3.2.

To determine the value of N around which splitting the data, the following method
is used.

1. Nsplit varies between 2 and 15.

2. The testing set is filtered such that N > 15. Indeed, it is the condition that
constraints the most the data. So to compare values on the same number
of observations, the smaller date set is chosen, corresponding to the more
constrained.

3. For each Nsplit, the training set is filtered such that N > Nsplit; then the se-
lected model is trained on this filtered training set; next estimations are com-
puted on the testing set; finally, Kullback-Leibler distance is computed to
compare the estimations to the observations on the testing set.

4. The values of the Kullback-Leibler distance are plotted and compared. The
chosen value corresponds to the elbow of the curve.
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At the end of this process, we obtain a number Nsplit of passengers around which
splitting the data set into two sets. Those two different sets have different pa-
rameters of the same distribution. So, two regressions will be trained : one for
door with a small number of passengers and one for doors with a high number of
passengers. At the end, we obtain an addition of two models.

Using mixed distributions in the model translates both behaviours. So it makes
the model more precise and accurate.

4.3 From observed margins to estimated margins
In order to build a scheduled transport planning, the estimation of the margins
are important as they ensure its robustness. Observed margins, including buffer
time and door unused time, are computed in function of the alighting and boarding
time. So estimation of margins is done through the estimation of the alighting and
boarding time.

However, contrary to the analysis on observed margins, the estimation of margins
will mainly focus on the buffer time. Indeed, buffer time can be planned to avoid to
many delayed trains. This corresponds to the chosen margin level : the higher the
margin level, the higher the buffer time might appear in reality, the less delayed
are trains.

4.3.1 Margins computation
To computemargins, we define a time Yα for whichN passengers have exchanged
at an α confidence level. So, time Yα is defined as :

P (Y < Yα|N) = α (4.6)

Different α correspond to different scenarios, they are chosen from {50, 90, 95, 99}.
A higher α leads to a careful timetable leaving few risk for passengers not to have
the time to alight or board. So a higher α leads to a longer planned alighting and
boarding time, so to less time savings when computing margins.

From those margins, two analysis can be conducted: time saved compared to
the current schedule, testing the robustness of the current time table in some
particular cases.

4.3.2 Computation of time saving using margins
Time savings are the comparison between the estimated alighting and boarding
time through the model and the current theoretical alighting and boarding time.
The theoretical alighting and boarding time is the theoretical dwell time to which
technical times are subtracted. For this section, as we study full train runs, the
alighting and boarding time of stops part of the ”Outliers” data set are estimated,
and stops part of the ”Nobody” data set are estimated to have 0 passengers. All
those stops are added to the testing data set to have as many complete train runs
as possible.

Two analysis are conducted and for both of them all variables of the model are
fixed, only margin levels are varying. On the first hand, time savings at the train
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level are computed. To do so, a train run is pointed as a train number k and a day
d. So we can check if all runs have all their stations. Then, time savings at each
station of the run are computed for different level of margins and then summed
up. On the other hand, time savings at a specific station are also analysed. Simi-
larly as for the analysis on trains trips, time savings are computed in seconds for
different margin levels. This analysis however focuses more on the variation of
time savings in function of the time of the day and in function of the chosen margin
level.

4.3.3 Robustness of the timetable
To reduce the number of delayed trains, it is important to check that the theoretical
dwell times holds out to some variation of the demand. To evaluate the robustness
of the timetable, the margin level 90% is selected. Then variables from the model
are varying to test some experimental cases. In the model, the variables are
linked either to the number of passengers or to the gap between the train and the
platform. As the gap between the train and the platform is a fixed number, only
the number of passengers, influences on the alighting and boarding speed.

1. First, to compute the robustness of the timetable, the maximum number of
passengers that can alight or board is estimated according to the current
theoretical dwell time.

2. Secondly, to evaluate the effect of specifying one alighting door and one
boarding door, we compute the maximum number of passengers that can
alight or board if we designate one door only for alighting, another door only
for boarding.

3. Thirdly, the spreading of passengers can also speed up the alighting and
boarding time. So, the maximum number of passengers that can alight or
board if passengers are perfectly spread along the platform is estimated.

To compute the maximum number of passengers able to alight or board, in the
first analysis, the following method is used.

1. The mean R of the ratio alighters over the total number of passengers is
computed at the station level according to equation (4.7).

2. The number of passengers alighting at a specific door is varying from 0 to
50.

3. So the number of boarders is computed as 1−R
R

× A.

4. The alighting and boarding time is estimated for all number of passengers

5. They are compared to the theoretical alighting and boarding time

6. The minimum number of passengers for which the estimated alighting and
boarding time is above the theoretical one is noted m. m is also the max-
imum number of passengers that can alight or board given a theoretical
alighting and boarding time.

R =
A

A+B
(4.7)
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The second analysis follows the samemethod as the first one. The rationR is then
set to 1 and both A and B are varying from 0 to 50. The obtained percentages
are compared to ones computed in the first analysis. Moreover, the number of
additional passengers being able to alight or board can be observed. Similarly,
this can be translated into time savings.

Coming to the last analysis, the uneven spreading of passengers along the plat-
form has been observed in Section 3.3. The conclusion was that when there are
between 100 and 400 passengers alighting or boarding at the station, the door
unused time represents between 50 and 60% of the train alighting and boarding
time and that 12% of passengers are using the critical door. So let’s compare the
alighting and boarding time (1) when passengers are perfectly spread along the
platform and (2) when the critical door is used by 12% of passengers. To do so,
we assume that the number of alighters A is equal to the number of boarders B.
Then let’s make N varying from 100 to 400, so A and B will both vary from 50
to 200. When passengers are perfectly spread along the platform, each door is
used by N/16 passengers. Otherwise, the critical door is used by 0.12N and the
other doors by 0.88N/15 = 0.06N . Then, the alighting and boarding time in both
cases are estimated and compared.
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5 Results
In this chapter, all the results of the computations described in Chapter 4 are pre-
sented and discussed. Beginning from the estimation of the alighting and boarding
time, we will then present the results on the margins. To conclude, the model is
performed on line R, the estimation is then compared to the observations so we
can validate the model on another line.

5.1 Estimation of the alighting and boarding time
The estimation of the alighting and boarding time is the main point of this study.
First the selection of variables is presented, then the three models are compared,
finally the results on the split of the data set are given.

5.1.1 Selection of the variables
Considering all variables, their transformations and interactions, around 40 vari-
ables were available. So, a selection of variables have been performed on the
training set through a stepwise algorithm assuming a linear Gaussian regression.
Table 5.1 presents the final selection of variables for the model. It also gives their
coefficient and significancy.

Table 5.1: Selection of variables made through a stepwise algorithm assuming a
linear Gaussian regression

Variable Estimated coefficient p-value (t-test)
Intercept 4.63 -
A 0.73 <1e-06
B -0.42 <1e-06
H -0.16 <1e-06
log(A) 0.53 <1e-06
log(B) 1.58 <1e-06
A² -0.0040 <1e-06
B² -0.0010 0.25
AxB -0.0088 <1e-06
BxH 0.075 <1e-06

From Table 5.1, only the coefficient of B² is significant at a 90% level, all other
coefficients are different from 0 with a degree of confidence of 99%. Secondly,
one can analyse the sign of the coefficients.

• A, log(A) and log(B) have positive coefficients as the higher they are, the
longer is the alighting and boarding time.

• A2,B2 andA×B have negative coefficients. Indeed above a threshold, if the
number of passengers increases, it will slow down passengers as less space
will be available for them. Through this result, we find again the fundamental
diagram of the speed in function of density.
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• B ×H positive coefficient leads to the conclusion that horizontal gaps slow
down boarders (compared to alighters).

• B has a not intuitive negative coefficient. However, it might be due to the
presence of B×H. As H is around 10 cm, the addition of the coefficients of
B and B ×H results being positive.

• H has weirdly negative coefficient.

The selection of variable considerably reduces the number of variables in the final
model. However, different variables could have been selected for each of the three
proposed models. Indeed, variables would have been specific to the model and
better translate its behaviour. To conclude, the variables used in the following
analysis are A, B, their transformations log(A), log(B), A2, B2, their interaction
A× B, and H with its interaction with B, H × B.

5.1.2 Comparison between the three distributions
Based on these variables, three different statistical models were trained on the
training set and tested on the testing set : a Gaussian model, a log-normal model
and a Gamma model. As presented in section 4.1, different goodness-of-fit indi-
cators are chosen, not only RMSE, MAE and MAPE but also the Kullback-Leibler
distance. Indeed the Kullback-Leibler distance indicates how similar two distribu-
tions are.

Table 5.2: Comparison between the three statistical models through mean indica-
tors on the testing set

Model RMSE (s) MAE (s) MAPE
Gaussian 5.93 3.68 0.47
Log-normal 6.54 4.04 0.43
Gamma 6.67 4.19 0.59

From Table 5.2, the log-normal model is the one giving the closest mean esti-
mations to observations. However, when computing margins, quantiles between
0.9 and 0.99 are used in the estimation to be sure that in more than 90% of the
stops, the estimated alighting and boarding is long enough for the number of pas-
sengers. So to choose between models, mean indicators must be completed by
an indicator on the shape of distributions. The Kullback-Leibler divergence from
observations is thus computed on quantile intervals of length 0.1 for each of the
estimation distribution. Table 5.3 presents this distance for all three models and
each interval.

Therefore, the most interesting model is the closest one to observations on the
[0.9 - 1] interval. This model is the Gamma model.

This result can be visualised on two graphs. Figure 5.1 is a quantile-quantile plot to
understand how far are the estimated quantile from the observed one. Estimations
on the testing set with all three models are represented and the Gamma model
is the closest from the observations for high quantiles. Indeed on the quantile-
quantile plot, the last quantiles of the gamma distribution are closer to the identity
line.
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Table 5.3: Kullback-Leibler distance for estimations of all three models compared
to observations for different intervals of quantiles

Interval Observed DKL

of α quantile qα (s) Gaussian Log-normal Gamma
0 - 0.1 1.0 8.28 1.78 6.71
0.1 - 0.2 3.0 0.50 0.21 0.037
0.2 - 0.3 5.7 1.88e-02 1.07e-02 1.02
0.3 - 0.4 9.0 1.27e-03 1.28e-03 2.00e-03
0.4 - 0.5 10.5 1.15e-03 4.87e-04 1.09e-03
0.5 - 0.6 11.8 1.04e-03 2.74e-04 1.09e-03
0.6 - 0.7 12.9 5.49e-04 8.82e-04 6.90e-04
0.7 - 0.8 14.1 1.71e-04 9.15e-05 7.79e-05
0.8 - 0.9 17.5 8.12e-05 3.80e-05 9.86e-05
0.9 - 1 22.5 2.52e-05 5.03e-05 1.64e-05
0 - 1 - 3.06e-02 1.00e-02 5.76e-02

Figure 5.1: Quantile-quantile plot with estimations made on the testing set

Figure 5.2 represents the cumulative distributions of the observations and of esti-
mations from all three models. For the observed cumulative distribution, the value
of a time T is the number of observations lower than T, divided by the total number
of observations. Again the Gamma model is the closest one from the observation
in the interval [0.9, 1].

As a result, even if the Gamma distribution does not perform well on the mean
indicators, it estimates well high quantiles. As high quantiles will be used for com-
putation of margins, the Gamma distribution is chosen. A last improvement of the
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Figure 5.2: Comparison of cumulative distributions of the observations with the
one of the models estimations

model is tried to better fit observations.

5.1.3 Two behaviours in function of the number of
passengers

Figure 3.2 suggests two behaviours in the alighting and boarding time. It seems
that doors used by a high number of passengers differ from doors used by few
passengers. To study those two behaviours, we first look for the number of pas-
sengers around which the behaviour changes. The selected number is the one
minimizing the KL-distance between estimated and observed data. According to
Figure 5.3, N = 4 is chosen.

The minimum is N = 4. Choosing N = 4 means that a model is fit for all doors
used by less than 4 passengers and that another model is fit for doors used by
more than 4 passengers. The combination of those two models is the mixed
model.

Then, Mixed Gamma model is compared to the Gamma model through different
indicators. Table 5.4 gives RMSE, MAE, MAPE and Kullback distance for both
cases. All three indicators are smaller for the mixed model. It seems to perform
better : the mixed model is closer to the observations than the simple model.

The Mixed Gamma model better predicts the alighting and boarding time. It will
thus be preferred to the Gamma distribution. This result confirms that when there
are less than 4 passengers at a door, then the alighting and boarding time is close
to an exponential distribution, so this process is close to a queuing process. When
passengers aremore than 4 at a door, then the alighting and boarding time is close
to a gamma distribution.
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Figure 5.3: KL-distance between estimated and observed distributions for differ-
ent splitting of the data set. The estimation is done through theGamma distribution

Table 5.4: Comparison between the Mixed Gamma model and Gamma model
through indicators computed on estimations made on the testing set

RMSE (s) MAE (s) MAPE KL-distance
Gamma model 6.67 4.19 0.59 5.76e-02

Mixed Gamma model 6.23 3.77 0.47 1.38e-02

Conclusion of all models To conclude, the performance of all models are summed
up in Table 5.5. Even if Gaussian and Log-normal models perform better globally,
the Gamma model is preferred for its distribution close to observations for high
quantiles. Moreover, splitting the data set improves the estimation. So, the mixed
gamma model is chosen for estimations in next Sections because it performs as
well as Gaussian model globally and has quantiles close to observed ones.

Table 5.5: Conclusion on all tested models
Model RMSE (s) MAE (s) MAPE KL-distance

Gaussian 5.93 3.68 0.47 3.06e-02
Log-normal 6.54 4.04 0.43 1.00e-02
Gamma 6.67 4.19 0.59 5.76e-02

Mixed Gamma 6.23 3.77 0.47 1.38e-02

5.2 Estimation of margins
Once the alighting and boarding time correctly estimated, we are interested in the
advantages of taking into account the ridership into the theoretical timetable. Also,
the robustness of the timetable to special situations can be evaluate.

5.2.1 Possible time savings
TheMixedGammamodel returns an estimated alighting and boarding time. These
estimations is compared to the theoretical alighting and boarding time and time
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savings can be deduced as the difference between them. Time savings are linked
with the alighting and boarding time at the train level, and depends on the quantile
chosen. Indeed, the alighting and boarding time is estimated through quantiles
based on the Mixed Gamma model. The quantile chosen corresponds to a mar-
gin level, equivalent of the buffer time. The higher the margin level chosen, the
more cautious it is about the time needed for people to alight or board. Then the
estimated alighting and boarding time will be higher. So time savings will be less
important. If time savings are negative, it means that the theoretical alighting and
boarding time is not long enough for this stop. Time savings are computed at the
train level at each stop and then aggregated either for a train run or for a station.

In this Section, the station and the number of passengers are fixed and the margin
is varying.

Time savings on train runs A full train run lasts 70 minutes. For computations
on train runs, the more complete are train runs, the better. So data sets ”Outliers”
and ”Nobody” are aggregated to the testing set for computations of time savings.
Alighting and boarding time of stops from the ”Outliers” set are estimated through
the Mixed Gamma model. The stops from the ”Nobody” set are considered to
have a null alighting and boarding time. Table 5.6 shows the mean time savings
for train runs for different margin levels. It also gives the percentage of train runs
with a positive cumulative time savings. Indeed, for some train runs, theoretical
alighting and boarding time is too short compared to the estimated one. So no time
is saved but the timetable should be adapted to take into account the ridership.
For instance, with a margin level at 90%, in average 155 seconds are saved on a
train run, but for 2.1% of the rides, estimated alighting and boarding time is longer
than the theoretical one.

Table 5.6: Time savings in second for different margin levels for train runs
Margin level Mean Trains with positive

(α) (s) time savings (%)
50% 217 100%
90% 155 97.9%
95% 132 96.8%
99% 84 76.6%

Surprisingly even for the 99%margin level, the average time savings on a train run
is of 84 seconds. Reported to the 277 trains running on line N per day, this time
saving represents 6h30 of train runs. This time could be saved on the number of
drivers or train sets needed to operate the line. However, this results hides some
variations through stations and times of the day.

Time savings at stations To better understand station specificities, the same
study is done at the station level and through the time of the day. Then, criti-
cal hours are identified at one specific station for one direction. As said in Sec-
tion 3.2, alighting and boarding time is longer that the theoretical one mainly in
two stations : Versailles-Chantiers and Houdan. So analysis have been done on
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Versailles-Chantiers and Houdan to understand particularly rush hours. Graphs
5.4 represent the time savings in function of the chosen margin level and the hour.

(a) Versailles Paris-Suburbs (b) Versailles Suburbs-Paris

(c) Houdan Paris-Suburbs (d) Houdan Suburbs-Paris

Figure 5.4: Time savings at Houdan and Versailles in function of the hour of the
day and direction

From Figures 5.4, rush hours are particularly critical at Versailles-Chantiers sta-
tion. For a 99% margin level, 20 seconds are missing to the theoretical alighting
and boarding time. At Houdan station, the difference between the scheduled and
the estimated alighting and boarding time is lower. The timetable is better con-
structed.

Themain deficiency of this analysis is the number of available data for each hour at
each station. For instance, the result observed for Versailles in direction Suburbs-
Paris (SP) at 1pm is based on only one estimation. Conclusions from this analysis
would be more reliable with more data.

Such an analysis could lead to a timetable building adapted to passengers flows
However, when reducing the theoretical dwell time, a risk of losing passengers
appears.

5.2.2 Simulation to evaluate the robustness of the current
timetable

To check whether the timetable holds out specific situations, alighting and board-
ing time is estimated in different scenarios. To test the robustness of the schedule,
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A and B are varying and the alighting and boarding time is estimated. This way
the maximum number of passengers able to alight and board during a stop can
be estimated and compared for different scenarios.

In this Section, the margin is fixed to 95% and the number of passengers is vary-
ing.

Specifying doors for exclusively boarding or alighting To see the effect of
specifying doors exclusively for boarding or alighting, different scenarios are com-
puted. Scenario 1 (S1) approximates observations as the observed mean of the
proportion between alighters and boarders at a given station in a given direction.
This scenario is close to observations. Then, three other scenarios are chosen:
if there are only alighters using the door (S2), if only boarders are using the door
(S3) and if the number of alighters is the same as the number of boarders, in other
word, if the ration is equal to 0.5 (S4).

Table 5.7: Maximum number of passengers that can alight or board for different
scenarios with a 95% margin level

Station Direction Nmax

S1 S2 S3 S4

Garancières-la-Queue PS 14 18 14 14
SP 16 19 15 14

Houdan PS 16 19 16 14
SP 16 19 15 14

Marchezais-Broué PS 16 20 20 16
SP 16 21 23 16

Orgerus-Béhoust PS 15 19 16 14
SP 15 19 16 14

Plaisir-Grignon PS 27 37 31 28
SP 29 37 32 28

Tacoignières-Richebourg PS 16 19 16 14
SP 15 19 15 14

Versailles-Chantiers PS 28 37 32 28
SP 25 36 27 24

Villiers-Neauphle-Pontchartrain PS 16 19 15 14
SP 17 19 15 14

In Table 5.7, it seems that between four and ten more passengers can alight or
board if a door is specified for alighting. The effect is less pronounced for boarding
doors. Moreover, the number of passengers able to alight or board through a door
seems quite small. The 95% margin level is really cautious but the model might
overestimate the time taken by one passenger.

To conclude, the gain depends on the station but globally, specifying a boarding
door and an alighting door speed up the transfer. This is quite easy in Regio2N
trains, as doors are grouped by two along the train.
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Spreading of passengers The final way to reduce the dwell time at station is
to spread passengers on the platform. Two scenarios are compared. As it is
observed on crowded days, Scenario 1 (S1) supposes that 12% of passengers
are using the critical door. Scenario 2 (S2) assumes that passengers are evenly
spread along the platform, so that 6% of passengers are situated at the critical
door. The study is done computing the alighting and boarding time for a number
of passengers going from 100 to 400 at the train level, so between 6 and 48
passengers at the critical door. Figure 5.5 presents boxplots of the estimated
alighting and boarding time.

Figure 5.5: Boxplots of the estimated alighting and boarding time when 12% of
passengers are using the critical door and when passengers are evenly spread
along the platform

The median of the scenario with an uneven spreading is around 27s while the
median of the alighting and boarding time with an even spreading is around 15s.
Spreading passengers really reduce the alighting and boarding time. Moreover,
one can compute the time saved in percentage of the alighting and boarding time
with an uneven spreading. Results say that spreading passengers leads to time
savings between 22% and 42% of the alighting and boarding time. This corre-
sponds to a time saving between 3s and 12s at a given stop.

The spreading of

Spreading passengers along the platform is therefore one efficient method to re-
duce the alighting and boarding time on the train run.

In conclusion, the alighting and boarding time modelling enables to computes
some time savings for different scenarios and to propose some clue to reduce
the duration of a train run.
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5.3 Validation of the model
Finally, Transilien is interested to use this model for other lines on the network.
Therefore, it is important to evaluate how well the model can be transferred to
another line. Thus, data from line R are collected and processed. This new data is
preprocessed as data from line N, a clusters data set is built and will be considered
as a new testing set. However, data of horizontal gaps at station is not available
on line R. So the Mixed Gamma model is trained on the line N training set with
passengers related variables. In other words, theMixedGammamodel is fitting on
line N without horizontal gap variable to be transferred to other lines. We checked
that this slight modification has not a too great impact on the results. The results
are really close and the model can be modified to widen its use.

Line R characteristics The main characteristic of line R is that the same rolling
stock, Regio2N trains, as on line N is running. Regio2N trains have been running
on line R since the beginning of 2021. So, data from January to July 2021 are
available on all branches of the line.

Line R serves the southern suburbs of Paris. Its first station after having left Paris
is Melun, a town 42km far fromParis, and the last one isMontargis situated outside
the Ile-de-France administrative region. A route map of the line is provided on
Figure 5.6. Trains leave Paris-Gare de Lyon every 30min in the morning peak
hours and every 20 min in the evening peak hours (16h – 20h). During non-peak
hours, only one train per hour is running in both directions.

Preprocessing on the dataset The same preprocessing is applied to the new
data set. Therefore, the clusters are computed andwe obtain a data set containing
7,361 stops, 23,735 doors and 26,185 clusters of passengers. 10,479 or one third
of those clusters occur at Melun station. This station is thus the main node of the
line. The second main station is Fontainebleau-Avon : 5,803 clusters happen at
that station.

Few statistics of the number of alighting passengers, boarding passengers and the
alighting and boarding time are given in Tables 5.8 for those two specific stations.

Table 5.8: Descriptive statistics of the number of passengers and the alighting
and boarding time on the two main stations of line R

(a) Melun
1703 stops

A B Y (s)
Mean 49 48 27
Median 27 21 23

Standard deviation 62 56 18

(b) Fontainebleau-Avon
1481 stops

A B Y (s)
Mean 18 17 15
Median 8 7 12

Standard deviation 25 25 9

From Tables 5.8, it appears that even if Melun and Fontainebleau-Avon stations
are the twomain stations of the line, not many passengers are transferring at those
stations. The number of passengers transferring at Melun is twice as the one at
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Figure 5.6: Route map of line R. Transilien ®

Fontainebleau-Avon, leading to around 20 passengers boarding at Fontainebleau-
Avon along the whole platform. The alighting and boarding time is also twice lower
at Fontainebleau-Avon than at Melun station.

Modelling and conclusion on the validation Then, the mixed gamma model
is used to estimate the alighting and boarding time for all the doors part of the data
set. This estimated alighting and boarding time is then compared to the observed
one.

Table 5.9: Results of the modelling of the alighting and boarding time on all data
from line R compared to the results on the testing set

Line RMSE (s) MAE (s) MAPE
N 6.50 3.86 0.47
R 7.27 3.87 0.62

Table 5.9 gives the results of the estimation on line R and compares them to the
results of the model on the testing set of line N. The RMSE is longer of one second
for line R than for line N and the MAPE of line R is 0.15 above the MAPE of line
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N. So results for line R are slightly worse than those for line N but the difference
is acceptable. Overall, the model can be transferred and used on line R.

Time savings are thus computed for line R. Full train runs last between 1h and
1h40 in function of the served branch. Table 5.10 gives the time savings in function
of themargin. Compared to line N, time savings are smaller showing that transport
timetable is better built on line R. However for a 95% margin level, 88 seconds
can be saved on a full run and nearly all trains save time.

Table 5.10: Time savings in second for different margin levels for R train runs
Margin level Mean Trains with positive

(α) (s) time savings (%)
90% 108 99.8%
95% 88 98.9%
99% 43 89.1%

The study on data from line R is made on the same data than those from line N.
It permits to validate the model and to compute some results on another line.
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6 Conclusion
The greater density of Paris in number of inhabitants, employment and cultural
activities implies more passengers flows across the city and its suburbs. The
transport network is therefore adapted and spread, especially the public transport
network. A dense network has to have a high frequency and short headways
with no delays. Obviously those goals are ambitious and research is helping the
operators to achieve their objectives.

This master thesis aims to give some clues about modelling alighting and boarding
time. As it was the first time similar data are recorded and studied, the descriptive
statistics already gave results about the door unused time and the buffer time.

Global conclusions Firstly, it has been confirmed that delayed trains have small
buffer time. However, buffer times of delayed trains are not null but around 10 sec-
onds. This means that contrary to the assumption of some studies, the delayed
trains do not leave the station right after the end of the alighting and boarding time.
So the method computing the alighting and boarding time based on delayed trains
have been evaluated. It appears that the method based on clusters is much more
precise that the method based on delayed trains. Thus when the data are avail-
able, it is preferred to use the clusters method. When the data are not available,
the method based on delayed trains is still an acceptable method.

Secondly, the alighting and boarding time has been estimated through four differ-
ent models on a fixed data set. We concluded that the Mixed Gamma distribution
is the most similar to the observation distribution. The Gamma model is a gener-
alised linear model using the gamma distribution and the reciprocal link function.
The Mixed Gamma model is composed of two Gamma models translating two be-
haviours in the alighting and boarding time. Therefore, if less than 4 passengers
are using the door at a stop, the alighting and boarding time follows an exponential
distribution, close to the queuing theory. If more than 4 passengers are using the
door, then the distribution is continuous, positive and right-skewed. The model
has been finally transferred to another line of the network. This validation leads to
comparable results for lines N and R on the estimation of alighting and boarding
time.

Thirdly, some levers where given to reduce the dwell time of trains. A study of the
estimated buffer time shows that around one minute and a half can be saved on
a 70 minutes train run. On a whole day on line N, this represents 6h30 of train
runs. A similar analysis was performed at the station level to identify critical and
empty hours and give some clues to adapt the timetable. Moreover, we showed
that if doors are specified as alighting or boarding doors, between 0.4 and 0.6
times more passengers can alight or board. Finally, the analysis on the spreading
of passengers along the platform leads to an alighting and boarding time divided
by two. The statistics on door unused time confirm that crowds spread naturally
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along the platform. It seems that the number of passengers impact more their
spreading than the number of exits.

Recommendations Therefore, few recommendations are given to Transilien
operator. First, when developing models estimating alighting and boarding time
and when data is available, the cluster method is more accurate than the method
based on delayed trains. Secondly, in the current time table, the theoretical dwell
times depends mainly on the station. We propose to adapt these theoretical dwell
time to the hour as well, especially in crowded stations. This adaptation can lead
to a gain of 6h30 of train run on the whole line per day. Finally, as Regio2N train
layout groups doors by two on specific car, proposing to specified one door for
boarding and one door for alighting will speed up the passengers flow. However
such a proposition will need to manage passengers’ flow inside the train.

Future work The novelty of the data can feed many new studies. The definition
of the alighting and boarding time can especially be further analysed, understand-
ing clusters and gaps between them. The particularity of this data could also lead
to a deeper analysis of the passengers’ behaviour during the alighting and board-
ing time. For instance, one could ask if alighting always occur before boarding or
if sometimes passengers begin to board before the end of the alighting. Also we
confirmed that the spreading of passengers along the platform is a key change
to reduce the alighting and boarding time. A further analysis on the factors influ-
encing on the passengers’ position could lead to give some clues to encourage a
better dispersal.

Coming to the modelling, dependency between the stations during a train run
could be included into the model. It might better estimate the alighting and board-
ing time. Finally, the modelled developed here can be useful to Transilien oper-
ator, it would be extremely interesting to generalize it to more lines than the one
equipped with the adapted rolling stock. Such a tools would give to the lines more
clues for the timetable building process to adapt it to the passengers’ flow and
optimize the resources use.
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A Cluster definition

Table A.1: Key indicators to choose the definition of a cluster computed on the
whole dataset from line N between September and October 2021
Time between 2 passengers Number of Number of Number of stops with Number of

of the same cluster clusters different stops clusters for 16 doors kept measures
<1s 8347 1640 3 19937

<1.5s 13761 2420 29 37916
<2s 14674 2532 35 42536

<2.5s 16039 2746 43 48476
<3s 17084 2832 46 51777

Time between Quantiles of number of Number of
2 passengers passengers into the cluster different Percentage of doors with C clusters

of the same cluster 25% 50% 75% 95% 99% max doors C = 1 C = 2 C = 3 C = 4
<1s 6 11 16 31 49 125 7119 84,53% 13,84% 1,47% 0,15%

<1.5s 4 9 15 33 51 125 12086 87,72% 10,94% 1,17% 0,14%
<2s 4 9 15 34 52 125 13253 90,27% 8,88% 0,72% 0,09%

<2.5s 4 8 15 34 53 138 14826 92,42% 7,03% 0,51% 0,05%
<3s 4 8 15 34 53 138 15902 93,08% 6,46% 0,42% 0,03%
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